

TEACHING CARD

Study Programme: Medicine and Surgery

Course: Physiology I

Year of study: II

Semester: II

Corse unit:

Physiology

Disciplinary scientific sector: BIO / 09

Number of credits (CFU): 9

Lecturers: Giovanna D'Arcangelo (2 CFU), Claudio Frank (3 CFU), Mattia Palmieri (2 CFU),

Andrea Vitali (2 CFU)

Methods and Didactics of Motor Activities

Disciplinary scientific sector: M-EDF / 01

Number of credits (CFU): 1

Lecturer: Anna Maria Malagoni

GENERAL INFORMATIONS

Prerequirements

The treatment of the specific topics of the subject requires sufficiently detailed knowledge of Anatomy, Medical Physics, Biology and Biochemistry.

Educational Goals

The course includes the acquisition by the student of knowledge of the operating principles of the organs that compose the human body, their dynamic integration into apparatus and the

understanding of the general mechanisms of homeostatic function control and their variations following physical activity. The course also includes the ability to independently apply the knowledge of organ and system functioning mechanisms to potential functional alteration situations.

Expected learning outcomes

1. Kknowledge and Understanding

To know and understand the physiological principles that govern the function of the organism's systems. To demonstrate the knowledge of cellular and organ functions and to acquire the ability to integrate the physiology from the cellular and molecular level to the organ and apparatus systems. To describe the molecular and functional aspects of each organ in humans, necessary for the homeostasis maintenance. To know the adaptations of the vital functions of the human body in response to the practices of physical activity. To evaluate the consequences of alterations at the cellular and organ level in the overall functioning of the human body.

2. Applying Knowledge and Understanding

To autonomously apply the knowledge of the organ and system functioning mechanisms to situations of potential functional alteration relating to the specific field to which the student will dedicate himself in the professional activity.

3. Making Judgements

To recognize the importance of a thorough knowledge of the topics covered for an adequate medical education. To identify the fundamental role of the correct theoretical knowledge of the subject in clinical practice.

4. Communication Skills

To orally present the topics in an organized and coherent way, using an adequate scientific terminology and compliant with the topic of the discussion.

5. Learning Ability

To identify the possible applications of the skills acquired in the future career and to have communication skills to convey what has been learned.

SYLLABUS

Cellular and muscle physiology, cardiocirculatory system.

Homeostatic mechanisms and control systems. Exchanges across the cell membrane. Active and passive membrane processes. Osmosis. Cell membrane potential and equilibrium potential. Electrical properties of the cell membrane. Propagation of the electrical signal along an excitable fiber. Voltage-dependent ion channels of Na +, K + and Ca2 +. The action potential. Refractoriness of excitable membranes. Propagation of electrical signals and action potential. Electric and chemical synapses. Excitatory and inhibitory synaptic potentials. Neurotransmitters and their receptors. Signal transduction. Intracellular signals. Synaptic integration. The neuromuscular synapse. Examples of diseases related to alterations in nervous communication. Muscle physiology. Structure of the contractile apparatus of skeletal muscle. Theory of the myofilament sliding. Cycle of cross bridges and development of force. Excitation-contraction coupling. The simple and tetanic twitch. Isometric and isotonic contraction. Voltage-length and speed-load curve. Muscle power. Energy sources of contraction. Muscular fatigue. Motor unit. Smooth muscle. Regulation and control of smooth muscle contraction. Cardiovascular physiology: general concepts, development, functions, muscle structure and blood vessel course. Coronary circulation. Cardiac conducting system. Contractile and specialized cardiac muscle fiber: structure, action potential and function. Structural aspects and excitation-contraction coupling of the heart muscle. Muscle contraction, myocardial band and cardiac fulcrum starting from the anatomical model of Torrent Guasp. Vasoactive compounds. Receptors involved in the mechanical and electrical activity of the heart. Effects of autonomic nervous system on cardiovascular physiology. In series and in parallel circulation. Systemic and pulmonary circulation. Fetal circulation. Phases of the cardiac cycle: pressure, volumetric and electrical aspects. Cardiac output: physical laws, its variation in different clinical conditions and measurement by non-invasive and invasive methods. Heart rate, blood volume, blood velocity, resistance, elastance, compliance, dynamic states, stress, strain, ventriculararterial coupling. Neuro-hormonal system involved in cardiovascular physiology. Atrial bainbridge reflex. Arteries, veins, lymphatic vessels: classification, development, morphology and functions. Capillaries and microcirculation. Laminar and turbulent flow. Physical laws applied to cardiovascular physiology. Arterial pressure: physical laws, its variation in different clinical conditions and measurement by non-invasive and invasive methods; perfusion pressure; pulse pressure; pulse pressure transmission; mean arterial pressure; rate pressure double product; mean systemic filling pressure; critical closing pressure. Baroreceptors and chemoreceptors; mechanisms involved in blood pressure regulation; guidelines on blood pressure control. Principles of hemodynamics. Relationship between resistance to flow, pressure, volume and viscosity of blood. The venous return. The venous pressure. Lymphatic circulation. Circulation in special regions: lymph nodes, spleen, liver, kidney, cerebrum. Electrocardiogram: general principles, paper speed and voltage, interpretation using ecg chart, Einthoven's triangle, Wilson Central Terminal, vectors, axis and transition, waves and segments, rate and rhythm.

Nervous System Physiology.

Organization of the nervous system. Sensory receptors. Somatic sensitivities: tactile and proprioceptive sensitivity. Pain. Motor functions of the spinal cord: spinal reflexes. Control of motor function by the cerebral cortex and the brainstem. Basal nuclei and motor control. Cerebellum and motor control. Cerebral cortex and intellectual functions: language, memory and learning. Sleep-wake rhythm. Functions of the limbic and hypothalamus system. Autonomous nervous system and adrenal medulla.

Respiratory System Physiology.

Organization of the respiratory system. Lung ventilation. Pulmonary circulation. Alveolar-capillary gas exchange. Oxygen and carbon dioxide transport in the blood and body fluids. Ventilation and perfusion of the lungs. Breathing regulation. Adaptations of the respiratory system to physical exercise.

Methods and Didactics of Motor Activities.

Capacity, skills and motor coordination. Energy systems, oxygen kinetics, maximum oxygen consumption and lactate. Physical activity, exercise, sedentary lifestyle. Physical fitness. Exercise testing and prescription. Adapted physical activity.

Recommended texts

- Human Physiology. Sherwood. Editore: Brooks/Cole
- Medical Physiology. Guyton and Hall. Editore: Saunders
- Neuroscience. Purves. Editore: OUP USA (to be integrated for the Nervous System)
- Essentials of exercise Physiology. W.D. Mcardle, F.I. Katch, V.L. Katch, Casa Editrice Piccin

Teaching method

The course is structured in 200 hours of frontal teaching, divided into lessons of 2 or 4 hours based

on the academic calendar. Lectures will include theoretical lessons and supplementary seminars on the topics covered.

Learning assessment procedures

The verification of the student preparation will take place with a written exam followed by an oral exam. The written test will consist of 30 questions with multiple choice answers, for each correct answer a point will be assigned. The final score of the written test will be given by the sum of the partial scores assigned to each question answered correctly. To access the oral exam the student must have totaled at least a minimum of 18 points. During the oral exam, the examining Commission will assess the student's learning skills as well as the ability to apply the knowledge and ensure that the skills are adequate to support and solve problems of a physiological nature (50% of the score). It will also be assessed: autonomy of judgment (25% of the score) and communication skills (25% of the score) as indicated in the Dublin descriptors.

In particular, the exam will be evaluated according to the following criteria:

Failed: important deficiencies and / or inaccuracies in knowledge and understanding of the topics; limited capacity for analysis and synthesis, frequent generalizations.

18-20: knowledge and understanding of the subjects quite sufficient with possible imperfections; ability to analyze, synthesis and sufficient judgment autonomy.

21-23: Knowledge and understanding of routine topics; Correct analysis and synthesis skills with coherent logical argumentation.

24-26: Fair knowledge and understanding of the topics; good analysis and synthesis skills with rigorously expressed arguments.

27-29: Knowledge and understanding of the subjects complete; remarkable analytical skills, synthesis. Good independence of judgment.

30-30L: Excellent level of knowledge and understanding of the topics. Considerable analytical and synthesis skills and autonomy of judgment. Arguments expressed in an original way.

Support activity

In addition to the didactic activity, the student will be given the opportunity to attend seminars, research internships, laboratory attendance. The topics of the activities are not subject to examination.

Student reception

The course teachers can be reached by appointment via e-mail.

Giovanna D'Arcangelo giovanna.darcangelo@unicamillus.org

Claudio Frank <u>claudio.frank@unicamillus.org</u>

Mattia Palmieri <u>mattia.palmieri@unicamillus.org</u>

Andrea Vitali <u>andrea.vitali@unicamillus.org</u>

Anna Maria Malagon <u>annamaria.malagoni@unicamillus.org</u>